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CHAPTER I
INTRODUCTION

Parameter identification is one of the important phases of
automatic control systems. Many control processes are directly or
indirectly related to some kind of identification of a process model.
For example, adaptive control, optimal control, and recent interest
in biological systems require identification of parameters to create
better mathematical models to represent the physical system in an
approximate form.

Creating linear models for nonlinear systems is a very important
aspect of system analysiso Linear systems are easier to work with and
identification of nonlinear systems is more complex since their response
characteristics are amplitude as well as frequency dependent, Eveleigh
(1967).

Many identification techniques are available in the mathematical
literature. Least square estimation is one of the oldest known methods.
A recently developed techniques called quasilinearization and method
of perturbations have a great future for application to linear or
nonlinear multivariable systems. Quasilinearization or method of
perturbations can be easily implemented on digital computers which
increases their importance for application as on line identification

methods.
I. STATEMENT OF THE PROBLEM

The problem is to identify a best approximate linear system

with a step input when sampled noisy data from the output of a nonlinear



system are given. A modified quasilinearization parameter. identifica-
tion technique known as the method of perturbations is the method
used for finding the best approximation.

The data obtained for the numerical experiments in this problem
are the result of simulation of the control system for automated
environmental control of an acoustic test facility at NASA, Manned
Spécecraft Center, Houston, Texas, Luckinbill (1970). This simulation
which is considered as a physical system for this problem is shown in
Figure 1, The physical system that is considered in Figure 1 includes
a R.M.S. detector. The output of the R.M.S. detector provides the
data for this problem. The simulated system includes a sixth order
system with the coefficients as shown in Figure 1. The R.M.S. detector

used is described as follows:
1/2

R(t) = t—(_’c-"E')u(t-T) Xz(ﬁ)dﬁ

(£-Tiu(t-T)

where
u(t-T) = unit step function
T = averaging time
x(t) = output of the sixth order simulated system.

11, PREVIOUS WORK-
Approximating nonlinear systems by linear models has created a
growing interest in recent years. Parameter identification plays an

important part in obtaining linear models. Many methods of identification



: exist in the 1ﬁteratureo |

Many of.the;present identification techniques are. summarized
by Eveleigh (1967) and Sage and Cuenod (1967). Eveleigh (1967) has
described the relationship of 1dent1fication and adaptive control
problems. Least square estimation of parameters was. developed
separately by Gauss and Legendre jn'ear1y-1800“s to estimate the
parameters of the motion .of heavenly bodies using physical and
astronomical data, Sorenson (1970). Sorehson also summarizes the
development of least square estimation and Kalman-filter theory.

Lee (1967) roughly divides all adaptive éontr01 system tech-
niques into two cllasses: those using explicit identification methods
and those using nonidentification methods. Nahi (1969) has described
identification by maximum 1ikelihood and steepest descent. Kovanic
(1967) has considered the problem of finding some or all parameters
of the unknown system on the basis of digitally treating noisy data
and has shown the method of ieast pueudosquares to yield efficient
results.

Quasilinearization is a recently developed and very efficient
technique for identification of linear and nonlinear systems parameters.
Bellman formulated the basic ideas behind quasilinearization also
called the Newton-Raphson-Kontorovick expansion in function space.
Kalaba in 1959 added a great deal of mathematical rigor necessary
for .the successful employment of this method, Bellman and Kalaba (1965).
Holloway (1968) used this method to investigate the possibility of.
identification of parameters for describing the earth's geopotential

from synchronous satellite data. Paine (1967) reviews.the use of



this method in the computation of optimal control. Lee (1968) has
considered the solution of non1inear‘ordinany differential equations
with nonlinear boundary. conditions.

Luckinbill and Childs (1968) have applied the method of
perturbations to the identification of parameters in partial differential
equations. Smith (1969) has considered the method of perturbations
and steepest descent for system identification using a hybrid computing
facility in order to compare their suitability as on-Tine identifica-
tion methods. Duval (1969) has also applied the method of perturbations

to an adaptive control problem using a hybrid computer.



CHAPTER II
THEORY OF IDENTIFICATION
I. REVIEW OF QUASILINEARIZATION METHOD

The basic concept 6f quasilinearization is small-signal
linearization of system response about a nominal path through state
space, Eveleigh (1967). This method requires the appropriate knowledge
of the form of the differential equation. The differential equation
must be reduced to a set of first order differential equations and
coupled with the set of differential equations of the parameters.,
Coupling these sets of differential equations forms a new set of non-
linear, first order differential equations. Experimental data may
be used for the boundary conditions. The solution of.this boundary
value problem can be accomplished as follows: {1) the linearization
of the nonlinear equations by Newton-Raphson-Kantorovich expansion
formula which Bellman and Kalaba (1965) refer to as quasilinearization
and (2) the solution of the remaining linearized equations by an
iterative method on a digital computer.

To illustrate this method consider the differential equation

d”'1x + - - -+ anx = a (2.1)

dt" !

n+1

where 341 is a step input.

This can be written as a set of first-order differential equations

Xi = F3(XysXgsmmmsKsay58p5mmmap ) 191,2,3--on (2.2)
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5 dXi '
where Xi =" gt i=1,2, - =.n (2.3)
Let Xn+j =3y i=1,2, - -, nt (2.4)

The set of differential equations for the unknown constants will be

as = X ,: = o j=1, 2, - - - n+l (2.5)

Rewriting equation (2.2)

X

j fj(xls = == X2n+’i) j = 1’ - 2n+1 {206)

Equation (2.6) may be represented in matrix form as

Using Newton-Raphson-Kantorovich expansion formula one can linearize

equation (2.7) as

= b . aF Y .y 2 a)
Xep = FOR) + T (X oy = %) + H.0.T. (2.8)
where k = kth iteration
H.0.T. = higher order terms
_3F = the Jacobian matrix
X
k
af1 o af1
°X1,k n k
| !
!
oF . | :
— a |
Xy i I
*Ton+1 3fona (2.9)
e TTTT ek




The iterative solution of equation (2.8) requires a vector
Yk(t)o This vector is generated by using the best estimate of X(o)
as initial conditions for solving equation (2.7) as the kth solution.

Equation (2.8) may be written as
L _ . y
Xk+] = G.x-k+] + E- $\2¢.§®}

where G.and B are functions of X, (t)

Equation (2.10) can be solved by superpositionvof particular solutions
(see Appendix B). This method is explained in detail by Luckinbill
and -Childs (1968) who point out that the use of particular solutions
has the feature of giving an explicit indication of the degree of

convergence of the iterative process.
IT. AN EXAMPLE

To illustrate the method of identification by the method of
perturbations, consider the second order model which is to be used

for identification for the problem
Y +ay+ay=ag (2.11)

In equation (2.11) ays 355 and ag are unknown constants, as is the
step input to the system and a1y 8y, and az are to be identified.

Rewriting equation (2.11)

Yo = =Y¥p “Yg¥7 * V5 (2.12)



where y = y]
R
a, = Y3
@ = Y4
a3 = Yp

Y3 Ygo and yg are considered to vary slowly enough with time

over the identification period to be assumed constant:

°

Y3 =Y, =¥5 =0 | (2.13)

Coupling equations (2.12) and (2.13) and rewriting in matrix

form . - - S -
¥y 0 1 000 ,y.i
A =¥q -y3 001 _ y2
d |ya| = 0 0 000 y (2.14)
I 3 3
Yq 0 0 000 Yag
_y5 0 0 000 Y5

Applying the Newton-Raphson-Kantorovich expansion, equation

(2.8), and dropping the higher order terms.

0 1 o000 ) ar =90,

. -(yg), ~(y3) 001 () a1 =),

yk+] =] 0 0 000] Yy, * Séﬁ' (Y3)gey =(y3), | (2.15)
0 0 oo0¢ IEANECAN
0 0 000 g r -08),




where ~ .
0 1 0 0 0
. = 0 0 0 0 0 (2.16)
ayk
0 o 0 0 0
0 0 0 0 0
and k is the. kth iteration.
Equation (2.15) can be written as
0 1 0 0 0
yk+1 = -(Y4>k -(y3)i ~(y2) =yl 1 Y+ +
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0
~2(.y4)k(y])k 2(y3)k(y2)k + (yg),
0
0
0 (2.17)

The resulting Tinear boundary value problem can be solved by the method
of superposition (see appendix B).
The solution of equation (2.17) can be written in the form of

equation (B.2) as the superposition of particular solutions



=5 (t) | '3 (2.18)

The initial condition matrix used to generate ép(t) as given by

equation (B.11) will be

w
e
w
Q
w
©
w
Q
w
)
w
Q
w
N

as ag ag og a5p5 u5

If it is assumed that the two initial conditions y(0) and
9(0) are known, Y and Yo will be zero so that only four particular

solutions are required and equation (2.19) reduces to

o o (2.20)

065 0L5 06595 0L5
Each column of @p(t) must then satisfy equation (2.17). A set of
Tinear algebraic equations will be generated from superposition of

the independent solutions in @p(t) which must satisfy the boundary

conditions. In the case of this paper all are given on one element
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of the state vector. This set of equations can be solved for y which
from equation (2.18) will yield a new set of initial conditions,

§k+](0) from which to begin another iteration.



CHAPTER I1I

APPROXIMATE LINEAR MODEL OF
A NONLINEAR SYSTEM

I. BACKGROUND OF DATA BEING FIT

The data considered for this problem is the output of the
physical system explained in the statement of the problem. The
d1g1ta1 RMS detector has an averaging time of T = 1 second after
léhé f1rst one-second time frame For the first one-second time
frawg all the samples obtained from the output of the sixth order
sysfém are used in the RMS calculations.

Two sets of .data are considered for. the problem. The first
;g;:js-generated by an.input to the physical system which is a
narréw band random noise with a 25.0 Hertz center frequency and a
géinléf 1 as_shown in Figure 1. This digitaT output is approximated
Sy ihé solid Tine in Figure 5. Output,up'fé 3.5 seconds is considered
"%6r the problem. This output is considered to be stationafy and
éfgodic. The second set of data is obtained as a special case
oflthe narrowband random input. In this case sinusoidal input
w1th 25 Hertz sine wave is used with a gain of 7.68698. This
d1g1ta1 output. is- shown by a dashed Tine in the Fiqure 5. Continuous
curves in F1gure 5 are plotted from the output of a digital simulation
whose 1ntegrat1on interval is .004 second,

By comparjng both sets of data, it can be seen-from Figure 5
that the,siﬁu%éida] daté has a faster .rise time than the random data

in:the transient region. The sinusoidal data has a steady state value



of approximately 5.0555 whereas the random data response is randomly

oscillating approximately around 5.0555.
IT. LEAST SQUARE FITTED MODELS

This paper is primarily concerned with identification of-
parameters when a large amount of data is available on one of the
state variables. This data together with the set of differential
equations describes a boundary value problem. When only certain
boundary conditions are given, one has to fit the model to "best”
satisfy those boundary conditions. But if a Targe number of
boundary conditions are given so close to each other that they
could be represented by a continuous curve, a selection of some
boundary conditions should be made which would describe the
continuous curve in the same “"best" manner. Table 1 shows the
minimum number of boundary conditions necessary to identify a
Tinear model with a steady state constraint and also with no
such constraint on the parameters.

If we are to reduce the number of data points, a question
must be raised as to a practical numEgr° Two considerations must
be made. First, that for a larger number of data points more
multiplications and summations are involved and thus more numerical
round off error. However, the second consideration states that
if we neglect the numerical round off error, a larger number of
data points will lead to a better fit of the data. To show this
let g5 €,.15> « - -» and g, be (n-m+l) sets of data where g
contains m data points which is the minimum number of boundary

conditions required to solve the given differential equation.

13



TABLE 1

MINIMUM NUMBER OF BOUNDARY CONDITIONS
REQUIRED FOR A MODEL

1

Order of model No Constraints Steady state
on Parameters constraint
to be identified

1 3 2
2 5 4
3 7 6




Thus the set Ego where m < k < n, forms an overdetermined boundary
value problem. En is defined such that it contains n elements where

€,.1 s @ subset of g, or more fully g, contains all the data points

Em C_ gm+] C e o o 6 C_ En

Z; available and is the largest set.

Let us define a least square criterion L

Ly = min jii: [2i - yn(tij] 2
2.

il

where yn(ti) a solution of the differential equation being

identified using n boundary conditions.

a = the vector of unknown parameters being identified
within the specified differential equation.
Likewise,
] n 2 2
Ln--] N mzn [j E {?i’yn—l(ti)} :l+ {?j - yn-1(t1{}
a i=]

j=i

In the above equations, Ln is the Teast square error for a solution of
the differential equation using n boundary conditions to identify
the parameters..

Assuming that the trajectory yn is an optimum, any other trajectory
will have a larger least square error. Using a set of-boundary values

1 @ trajectory Yio would be obtained such than

< L

Ln — n-1
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1t can be shown in a similar manner that

L <L

< . . o &L
n n-1-=

m

Since numerical roﬁnd-off error is difficult to evaluate an
arbitrary decision was made to use 35 boundary values for the random
data and 34 boundary values for the sinusoidal data. These boundary
values and time of the boundary values are listed in Table 2.

Weighting factors for the boundary values is an important
factor in least square analysis of data. However, for this problem,
it has been considered that all of the errors of the boundary
conditions will have equal importance so that the weighting factors
are all equal.

Identified linear models are presented in Figures 6 through
13. In Figure 6 is shown an optimum Tinear first order solution for
the random data described earlier in this chapter.

The differential equation used for the solution in Figure

6 1is

%+ aTx = a, (3.1a)
where

ay = 2.999819

a, = 15.16576

This Tinear model has a steady state constraint

= 5,0555
a, a,



TABLE II

BOUNDARY CONDITIONS

Narrow band random noise
jnput to the physical system

Sinusoidal input to
the physical System

No Time 1in Boundary Time 1in Boundary
Seconds Value Seconds Value
1 0.1 0.299414 0.04 0.013744
2 0.2 1.277949 0.08 0.06468099
3 0.3 1.719279 0.12 1.462720
4 0.4 2.92758 0.24 3.661570
5 0.5 4,621070 0.36 4.348080
6 0.6 5.42318 0.48 4,50155
7 0.7 5.381490 0.60 4,619630
8 0.8 5.175819 0.72 4.,696130
9 0.9 5.045070 0.84 4,748690
10 1.0 4,77436 0.96 4,788369
11 1.1 4,80693 1.08 5.004510
12 1.2 4,858879 1.20 5.120529
13 1.3 4,887460 1.32 5.047359
14 1.4 5.447889 1.44 5.053269
15 1.5 5.860999 1.56 5.057610
16 1.6 6.116050 1.68 5.055420
17 1.7 6.164220 1.80 5.055699
18 1.8 6.287990 1.92 5.055900
19 1.9 6.296189 2,04 5.055860
20 2.0 6.333739 2.16 5.055810
21 2.1 6.343800 2.28 5.055710
22 2.2 6.343829 2.40 5.055650
23 2.3 6.43925 2.54 5.055610
24 2.4 5.859400 2.76 5,055510
25 2.5 4,781469 2.88 5.055449
26 2.6 3.531750 3.00 5.055429
27 2.7 3.146099 3.12 5.055349
28 2.8 2,950950 3.24 5.055349
29 2.9 3.112769 3.36 5.055280
30 3.0 3.88759 3.48 5.055280
31 3.1 4.,354159 3.60 5.05524
32 3.2 4,592560 3.72 5.055160
33 3.3 4.,723069 3.84 5.055000
34 3.4 4,729449 3.96 5.055079
3.5 4,776139
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and the least square error is 38.13594. This first order model has
three first order differential equations for the purpose of identifi-
cation. The initial conditions x(0) is considered to be known and
equal to zero, and the parameter 3, is linearly dependent on the

parameter a Therefore, only the parameter a_, is to be identified

1° 1
for this model. The initial condition matrix, equation (B.11), will

be

“°1 M1 Y
ép(to) = oo Aoy Ay do (3.2)
[

However, since the initial condition x(0) is known and a, is dependent
on a, as described above, only two independent solutions are required.

Thus, the initial condition matrix reduces to

where
= ]02
5.0555

(9}
I

The new initial condition vector is given by equation (B.12) as,

x(ty) = e(ty) (3.4)
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where Y] and YZ were found to be -1044689x10—5, and 1.000074 respectively
at convergence of the iteration scheme.

In Figure 10 is shown an optimum Tinear first-order solution

of the sinusoidal data as described earlier in this.chapter where

X +agx = a (3.1b)

2

and

3.824817
19.33658

4

%

The solution of this model has a steady-state constraint,

a, = 5.0555 a1

and the least square error is 3.090575. Values of Y1 and Yo at

convergence are found to be -6.,676804><“IO"‘7

and 1.0000 respectively.
Comparing these two models of the same order of two different
kinds of data, one can see from Figure 5 that the model of sinusoidal
data has a faster rise time compared to the model of random data.
The settling time for these two models is tabulated in Table 3. The
settling time is defined as the time required for the transient to
be within the specified percentage of the final value and remain
within those Timits.

Figure 7 is an optimum linear second-order solution for the

random data. The differential equation identified is

o
(OV]
5

[_—

X +a.X+ a.x = a
1 2 3
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TABLE III

SETTLING TIME

2% of the steady 3% of the steady 5% of the steady

state value state value state value
Order Random Sinusoidal Random Sinusoidal Random Sinusoidal
of the Data Data Data Data Data Data
Model
1 1.3 1.02 1.17 0.92 1.0 0.8
2 0.69 0.66 0.676 0,607 0.64 0.5135
3 1.345 0.85 1.314 0.665 1.24 0.6

4 1.295 0.925 1.275 0.875 1.225 0.615




where

a] = 6,760160 wn = 4,66
a, = 21.77028 £ =6,726
ag = 110.0596

This Tinear model has a steady state constraint

a, = 5.0555 a,
and the Teast square error is 32.6736. The second order model has
five first order differential equations for the purpose of identifica-

tion. The initial conditions x(0) and x(0) are considered to be

known and equal to zero. The parameter a, is linearly dependent on

3

the parameter aéo Therefore, only two parameters, 3y and a2 are to

be identified for this model and only three independent solutions
are réquired,

The initial condition matrix as described by equation (B.12) is
s o]

OL2 (12 0;2

@(to) = (3.6)

a3ze3 o3 *3
4 %Py %

Coy Ca4p4 Cgﬂl

where

5.0555

(9}
1]
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Yy y2,<and Y3 at convergence are found to be -10642473x10‘4,
-1.9062885x10~%, and 1.000055 respectively.

In Figure 11 is shown an optimum solution for the sinusoidal

data where
v . N Iz -
X + a;x + a,X = ag (3.7)
and
a1 = 17.89108 w, = 8.125
a, = 79.49779 g = 1,089
a3 = 407,9006

The steady state constraint is

ay = 5,0555 a5

and the least square error is 1.21893. Yys oo and Vs at convergence

afe found to be -604505637x10'3, -8.4769838x10~3 and 1.014927 respectively.
As shown for the first order models of both sets of data, the

second order models also show that the rise time of the model of

sinusoidal data is faster than the rise time of the model of random

data. As shown in Table 3, the settling time is larger for identified

models from random data than the settling time of identified models

from the sinusoidal data. The natural frequency and damping ratic

of the sinusoidal model is higher compared to the natural frequency

and damping ratio of random model. The sinusoidal model is overdamped

whereas the random model is underdamped with a 3.65% overshoot. The

parameter 2, is the square of natural frequency and the parameter a%

is twice the product of natural frequency and damping ratio.
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Figure 8 is an optimal least square solution of third order

model for the random data where

; tax=a, § + b]y + bzy = X (3.8)
and
_a1 = 3.856122
a2 =960,3408
b] = 4,000962
b, = 49.26184
w, = 7.018
£ = 0,285

This third order model has a steady state constraint

a2 = 5,0555 a.b

172

and the least quare error is 30.81062, The third order model has
seven first order differential equations for the purpose of parameter
identification. The initial conditions y(0), y(0), and x(0) are

considered to be known and equal to zero and the parameter a, is

2
dependent on the parameters a and b2° Therefore, only three parameters
é&, b], and bzfaré to be identified which requires only four independent
solutions.

The initial condition matrix as described by equation (B.12) is
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_;,l OL-l 0(.1 OL-I
062 0&2 01,2 0L2
OL3 0!,3 063 OLS
2(ty) = | o0, o oy oy (3.9)
a5 a5p5 a5 a5
a6 a6 agPE og
| “95% ©%5%°5  C%5%Pe  C95%

where
¢ = 5,0555

fg = Pp = pg * 1.2

=4

9

Y Yos Ygs and A7 at convergence are found to be -1.0435563x10
—104409055x]0'4, —106509967x10“4, and 1,000412 respectively.

Figure 12 is the optimum third order solution for the sinusoidal

data where

§(+’a'1x=a23yv*'b]y+bzyzx
and

a., = 4,975478 w = 17.7

1 n

a2 = 7884 .874 g = 00,2942

bj =.10.2924

b2 = 313,4702

The steady state constraint is

a, = 5.0555 a]b2

and the Teast square error is 0.4333401. Y15 Yoo Y3 and Y, are
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found to be 4.697885x107°, 7,291275x10™2, 2.403890x10~%, and 0.9995397
respectively.

Comparing the third order linear models, we notice that both
of them have approximately the same damping ratio but the natural
frequency of the sinusoidal model is higher than the natural frequency
of the random model. Values of all the parameters of the sinusoidal
model are larger than that of the random model.

Figure 9 is an optimum solution of fourth-order 1inear model

for the random data where

X + a,x TaxEa,,y + b]y‘+ bzy = X (3.10)
and
a, = 25.78181 “n 9.5
ay = 90.26985
E] = 1,355
ag = 25705,09
w, = 7.5
b_I = 3.628691 )
b, = 56.32648 g, =0.242

The Teast square error is 30,7365 for a steady state constraint of

ag = 5.0555 azb2

The fourth order model has nine first-order differential equations
for parameter identification. The initial conditions x(0), x(0),
y(0), and y(0) are considered to be known and equal to zero. The
parameter a, is dependent on the parameters a, and bzcv Since only
four independent parameters are to be 1dent1f1ed for . this model, only

five independent solutions are needed.
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The new initial condition matrix is described by equation

(B.12) as
_kgH 1 % 4 *
0(.2 OLZ 062 0L2 0&2
063 OL3 0t3 063 0L3
0L4 0(,4 OL4 OL4 OL4
o(t)) = | o5 op a5 o5 o5 (3.11)
ag a6p6 a6 g g
Ol.7 OL7 0L7p7 067 OL7
og a8 u8 agPg og
COC60&8 CO@60L806 COL8O(.6 C0680L6p8 C0L6 068
where
¢ = 5.0555
g = pg = Py T pg = 1.2
Yye Yos Vg2 Vg and Yg at convergence are found to be -10770833,‘»(”}@"@9

-7.391658]x10'4, 50156633x]0‘4, ],84303x10'3, and 0,9985575 respectively.
Figure 13 is an optimum forth-order solution for the sinusoidal

data. The differential equation is shown in equation (3.10) where

a, = 7.274683 w, =17.22
2

a_ = 296,2436

2 g, =0.215
a. = 925558.2

3 o = 24.87
b, = 139.1458 N
b_ = 618,0042 g =2.8



The least square error is 0.565178 and the steady state constraint is

a3 = 5,0555 a2b2

Y1s Y25 Y35 Yqo and Y5 are found to be -0,3066210, -0.3952708,
11.91018, 11.34555, and -21.55382. Values of Yy2 Yo Vg and v,
are not close to zero and Ye is not close to one. This search was
terminated at this point since it was observed that further search
for an optimum value did not improve the least square error.

In general, one can notice that the rise in the transient

region is faster for all models of sinusoidal data compared to the

rise.of the corresponding model of random data. Numerical values of

all the parameters of the models of sinusoidal data are higher when
compared to the numerical values of the parameters of the models of
random data, Table 4. In Table 5, the convergence constants Y; are

summarized for the different orders of models.
111, STEADY STATE CONSTRAINT

The Tinear models considered here with a step input will
always reach a steady state value as time goes to infinity. This

could be illustrated by taking a first order model.

27

X + a,x = a (3.12)

i 2

The total solution of equation (3.12) is

a
x(t) = —2 (1-e21t) (3.13)

aq



TABLE IV

NUMERICAL VALUES OF IDENTIFIED PARAMETERS

28

(a) Random Data

' Model a 8 b b

Order of Mode 1 dz 63 2

] 3.00 15,16

2 6.76 21.77 110.06

3 3.86 960.34 4,00 49,26

4 25.78 90,27 25705.09 3.63 56.33

(b} Sinusoidal Data

Order of Model a? az a3 b bz

1 3.82 19.33

2 17.89 79.50 407.90

3 4,98 7884.88 10.29 313.47

4 7.27 296.24  925558.2 139.14 618,00
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where
x(0) = 0,0
Assuming 3 to be a positive number, for t »>> 0
6.2 /
x(t) - == =c = constant (3.14)
1
or
a2 =C a

where ¢ is a constant which is the steady state value,

A11 of the models that are considered have a steady-state value

equal to 5.0555. This particular value of steady state was chosen
from the random data shown in Figure 5. The random data has random
oscillations about 5.0555 after the first one-second time period.
The convergence space of this method of parameter identification is
defined to be those values of parameters which will converge to the
optimum parameters. The convergence space is increased by use of
the steady state constraint. In the case of the random data, the
steady state constraint will force the solution to the steady state
value and prevent large oscillations in the transient region which
would have occurred in an attempt to match the random oscillations
of the data.

The steady state constraint will cause a large error for the

models of random data in the steady state region, but this error is

justified by a decreased least square error in the transient region.
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IV. LEAST SQUARE ANALYSIS

The method of least square (Appendix C) provides an indication
of the degree of accuracy of the fitted curve to the original data.
This degree of accuracy or approximation is dependent on the least
square error, Figure 14 shows the Teast square error for all the
different models. Figure 14a is for random data which shows that
the Teast square error is exponentially decreasing as the order of
a mode1 is increased up to a certain order. The difference in the
1east square error of third order model and fourth order model is
not s1gn1f1cant For both sets of data, the same resu]ts are achieved.
The Teast square error may decrease as the order of the model is
increased, but this will-also increase the dimension of the matrix
that.has to_be inverted, and matrix inversion on the digital computer
is inefficient compared to other numerical operations. This is a
sourte of an error which may cause the Teast square errok to increase
instead of decreasing. |

From the results presented in Table 6, we can conclude that the
third order models are the optimum models for both sets of data.

The least square error for all of the random models is murh
h1ghek than the models of sinusoidal data. This difference in ﬁeast
square errors is in the steady state region. The least square error
in the steady-state region for the models of sinusoidal data is
negTigib]e wheréas least squére error in the~steady—state region of
the-models of random data is very high.

o Thé error-éncountered in Tinear models is presented in Figure

15 through 22. This error could be divided into two parts: (1) error



TABLE VI

LEAST SQUARE ERROR

Order of Sinusoidal Random Data
a System Data (34 B.C.) (35 B.C.)
1 3.090595 38.13594
2 1.21893 32.6736
3 0.4333401 30.81065

4 0.56517" 30.7364
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in the transient region and (2) error in the steady-state region. As
djscussed before, errorvin»the steady-state region remains constant.
Error in the steady-state region is caused by the steady—state‘constraint
which forces the steady-state value of an identified model to a
constant value. Error in the transient region-is decreasing as the
order of a model i§ increased. This is observed by noting the change
in the envelope of the error in the transient region. For higher
order models, this envelope becomes smaller which is the indication

of a better fit to the data.
V. CONVERGENCE OF THE IDENTIFICATION SCHEME

Kalaba (1965) has proven that if the iterative process of
quasilinearization converges to a solution it does so quadratically
1ﬁ.fhg-neighborh60d of the solution. Practically, this means that
wheniéhe:parameter converges close to its optimum value, the number
of significant digits in the appkoximate soiution is at least
doubled with each iteration. This property'of.convergence of a first-
éfder model to the sinusoidal data is considered, the differential

equation of the first order model is

X +ax = a, (3.

(%]
e
in
R

where a, is constrained by the relationship

a, =.5,0555 CH

The}initia1 guess for a, is 5.368028. Table 7 shows that each

1‘and that the change in the

parameter a1'is approaching to zero. It may be observed that the

iteration is improving the parameter a



TABLE VII

CONVERGENCE OF PARAMETERS !

No. of Change in Parameter 2,
Iteration Parameter a,
5. 3680282

1 -2,277236 - 3.090792
2 0,69425200 3.785044
3 0.004498195 3.830026
4 -0.000595474 3.824071
5 0.000846862 3.824918
6 -0,000012683 3.824719
7 00000022888 3.824814
8 0.000006675 3.824821
9 -0.000003337 3.824817

1
Identification of the first order model

X + a,x = a
| 2

where a, = 5.0555 ay

2

Initial guess for a1
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number of correct significant digits of the parameter is not exactly
doubled each time. This fact is the result of round-off errors
encountered in calculations. The program used for the identification
was used in single precision arithmetic and the accuracy after six
or seven significant digits is not guaranteed. Double precision
arithmetic should provide better results.

Divergence due to improper initial guess is shown in Figure Z.

A second order model with a differential equation

X +akotax = ag (3.16)

is considered. The initial values of.a1, 3, ag are 8.5, 44.0, 100.0
respectively. Figure 2 shows that the search for an optimum point is
not in-the right direction. Every iteration increases the value of
parametersn The same second order model with a different initial

guess and a constraint a, = 5.0555 a5 is shown in Figure 3, where

3
the search for an optimum point is shown. It is easy to see how the
solution proceeds towards an optimum point.

The path of convergence can be changed as follows:

T].i - Bo‘.-i

wheréld < |8| < 1. Luckinbill and Childs (1968). This factor 8
will alter the change in initial condition vector-from‘ui to ..
The value of g could be automatically adjusted to meet the required
change in the initial condition vector.  This is illustrated in

Figure 4 where a fourth order model is considered. The differential

equations are
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3 + 0‘ + = ‘ , 13 + b + b -
X a,ﬂx azx 63 N "ﬂy Zy X

The initial guesses for g5 @y, b], and b2 are 6,082, 304,708, 69,351

and 295.603 respectively, where

In Figure 4, b] VS, b2 is plotted, where the dotted Tine shows the
proposed change. This is the search trajectory of the parameters
b1 VS. bzlwithout scaling by the factor. The solid Tine in Figure
4 is the search trajectory using a factor g8, It is seen that the

factor g significantly alters the trajectory of the parameters.



CHAPTER 1V
I. CONCLUSIONS

Identification of parameters in a linear system by the method
of quasilinearization has been proven feasible in a number of previcus
papers and books. However;-this study has endeavored to show that an
optimum'order of a linear model does exist for a given numerical
technique, data set and digital computer with which the identification
is performed.

}For the IBM-360/40, Singfé precision arithmetic, Runge-Kutta
fouffh order integration of step size .01 and Gauss Siedel matrix
inversion, it‘has been shown that the third order model is an optimum
mbdé] for the giVén random and sinusoidal data. As stated by
Luckinbill and Childs (1968), an explicit indication of the numerical
fouﬁd-off error which is occurring in the identification procedure
is given by v, for the (i+1) model as shown in Table 4, As the
ordék of the model to be identified increases, the number of parameters
and unknown initial conditibns increase which causes the dimension of
fhe‘ﬁatrix to be inverted to increase and numerical round-off error
%n infegration to fncreéseo As the number of boundary conditi@ﬁs
1hché&se abové tHe number required, the numerical round off error
EWiiila1so 1n¢rease‘due to the matrix multiplications which are
invalved in the Teast square fitting of the data to the model.

To maximize the usefulness of the quasilinearization method of
f&entification} it wou]d be best to identify all of the parameters in the

model with no constraints on the parameters. However, it has been
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found in this study that the steady state constraint alteration of new
initial conditions and a non-negative restraint on the parameters
or initial conditions were necessary in order to ensure convergence
to an optimum least square so]ution:

The use of the steady state constraint requires that the
identification be an off-line procedure due to the need of knowing
the expected or steady state value of the data after the transients

have died out.
II. EXTENSIONS AND FURTHER WORK

The main problem encountered in the numerica1 experiments
performed was finding an initial guess which would converge to the
optimum solution. Since it is not difficult to find an initial guess
for the first order models which will converge without the need for
constraints, it is recommended that a procedure be found for increasing
the order of the linear system one parameter at a time until the least
square error stops decreasing. For example, assume that we have

identified a set of parameters, a] and a, in the first order model.

x+a]x = a2

Next we are to select an initial guess for the parameters b1 andfb2 in

the second order model

X + b.x + =
X b]x b2x b3

It may be possible that if b, and b, are selected such that one of the

1
characteristic roots of the second-order equation is equal to -2, and

the other root is chosen to be 10 times -a] then the jdentification
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process will converge rapidIy to the solution. No such approach has
been investigated here but such an approach may prove valuable. For
instance, it may be possible to identify the steady-state value of
the data by using the ratio az(a1 from an unconstrained 1st order

model and to choose and constrain the 2nd and all higher order models.
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APPENDIX A

FIRST :ORDER SYSTEM AND RMS DETECTOR

The following system is to be solved for an analytical solution

— t 1/2
bsinwt_ Sla x(t) o ’%T" yJ” X(E)ng' Yt
P
t
where a and b are constants
ty=t- (t-T)U(t-T)
$ = (t-T)U(t-T)
Consider the following system
bsinwt, “§%§f x(t
This system could be expressed as
X + ax = bsinwt (A.1)
The solution of equation (A.1) is
x(t) = ‘ W e - coslwt+e)| (a.2)
a2-+ w? a2_+ w2

where



Let z = wt + ¢ so that

: 2 2 ' 2
e (8 de = — B L L
P tla? + WP -2 (w® + 2°)

%,

W - a/wCos z + Sin z

\1W2+a2 2_2.+'| .
Wl wt + ¢

wt + ¢
10z , sin2z
+ W |2 T

w% + ¢
Simp]ifyihg the abbve equation
- b2 172 - Wl 2at _ e-Za%
&= e U
tp(a2 + wz) 2a(w® + a%)

2 W
(w2 + a?) 32

a ‘ .
{:e'at (- w Cos(wt + ¢) + Sin(wt +¢))

- emat (. E‘Ccs (wt + ¢) + Sin (wi + ¢)) }

+ 5-£5§}¥§L + ElW' (Sin 2(wt + ¢) - Sin 2 (wt + ¢))}

44

>

‘a/W YA a ¢ wt + ¢
e e W
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Letting £ = O

1/2
2 2
vt = | — (et
t(a” + wz); 2a (w2 +»a2)
L L at (02 Cos(ut + 4) )
- : e”?t (- S Cos(wt + ¢) + Sin(wt + ¢
(WZ + a2)3/2 W

a
- (- w Cos ¢ + Sin¢i} + g + %W‘ (Sin 2(wt + ¢) =~ Sin 2¢)}

It is.easily shown that as t » =

y(t) = % (n)
: , A,
2(a2 + w2)



APPENDIX B
SUPERPOSITION OF PARTICULAR SOLUTION

The work shown in tHﬁs_appendix is described in more detail
by Luckinbill and Childs (1968),

Let us consider an nth order differential equation

dX _ Az L B
I Ax + B (B.1)

where x = vector with n elements

|

I
]

matrix with n x n elements which may be a function of x.

vector with n elements

lwe)]
i

Let -

X = ¢p§' (B.2)

where Qp is the solution matrix of equation (B.1) with a rank n and

(51 5 | 5
° -Iip]l P2: ------ :PMZI (B.4)

where P] is a vector with n elements and

N R O by (B.5)
]: 2 ; : n+1



@p will satisfy the following differential equation

do
P

w4t P (B.6)

n
I
e
+
wm

where S = (.n X n+1) matrix as -shown below

s = Es‘ i E‘E—”—EB‘:] (B.7)

Substituting equation (B.2) into equation (B.1) and subtracting
SY from.both sides, -

do - -
P . Ao, -S| Y =B - sy (B.8)

dt

Substituting equation (B.6) into equation (B.8) will give

sy = F (B.9)
This -could be written as
n+l
Bj Yy = Bj T<j<n
i=1
or
n+l
v, =1 (B.10)
i=1

which is the same-as equation (B.3).

47
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By choosing proper initial conditions, 5h+] will satisfy the

boundary conditions, -then

EH? =-®; v Eﬁ] Yo+l 81
where
% Tq’;; | P—"”]
Y =-.—7/ | Yn-ﬂ_
L ‘ —

Substituting equation (B.3) into equation (B.11) will give

Since the matrix is not singular, ?q must be zero at convergence.

Let o be the vector which represents the initial conditions of the

so]utmn'Pn+1

condition. Then initial condition matrix will be

» and let p; represent the purtubation of the ith ‘initial

_Ot.]p.l OL.] ———— a-l OL]
ds Gppy === Gy Gy
| | | |
®p(to) = | | emem ! (B.12)
l l |
0(.‘!\ an - unpn U.n

By successively subtracting the last column from each of the other
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columns, -etc., one can reduce the matrix @p(to) to a diagonal matrix

with diagonal elements a;p.. Therefore ®p(t) has a rank n,



APPENDIX C
LEAST SQUARE ESTIMATION

To illustrate the method of least squares, consider fitting

a differential equation
yt+ay =a, (c.1)

to n given data points x(t1), x(tz), ———— x(tn)

The solution of equation (C.1), where a, = ca,, is

a2 -a5t
y(t) = 5 (1-e"17) (c.2)

where y(t) = 0.0 at t = 0.0

Since only one boundary condition is required to determine
ap, n > 1 forms an overdetermined boundary value problem. In this
case y(t) will not pass through all the boundary values or it may

not pass through any one of them. Therefore for a given value of

where ai is the error.

Taking 8 for each point and summing the squares of 8



Equation (C.3) could be written as

n a2 2
- Z "; { a (- e 1M x<t1>}

i=1

where hi is the weighting factor of each point. Since the absolute

error is important in this problem let

Where relative accuracy is important,a choice of
hy = 1/71x(t)]

could be made.

L is the measure of how well the curve fits the given points.
If L is equal to zero, this means that all the given points lie on the
curve of y(t). If the points are away from y(t), L will be Targer,

The problem is to find the parameter a, such that L will be minimum.

1

The parameter a, is dependent on ay since a, = cay. Therefore

an optimum value of aj will give an optimum value of ay.

oL _ 2 n -a.t, -a,t.

s T > [c(1-e171) - X(ti)] (ct, e 17y g
i=1

Dividing both sides of athe above equation by 2c

51



LS [e(i-e 1) - x(e] (te 1)
- c(l-e - x(ts t.e =.0
i=1

Equation (C.4) is a nonlinear equation for estimating one
variable. When equation (C.1) is of higher order and more than
one parameter is unknown equation (C.4) is replaced by a set of

nonlinear simultaneous equations.

(C.4)
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Figure 14. Least Square Error vs. Order of the Models
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